
UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 1

1

4.1 Concepts of Pointer
Pointers in C++
Pointer is a variable in C++ that holds the address of another variable. They have data

type just like variables, for example an integer type pointer can hold the address of an
integer variable and an character type pointer can hold the address of char variable.

Syntax of pointer
data_type *pointer_name;

How to declare a pointer?
/* This pointer p can hold the address of an integer
 * variable, here p is a pointer and var is just a
 * simple integer variable
 */
int *p, var

Pointer operator * in C++
C++ provides two pointer operators, which are Address of Operator (&) and Indirection
Operator (*). A pointer is a variable that contains the address of another variable or
you can say that a variable that contains the address of another variable is said to
"point to" the other variable. A variable can be any data type including an object,
structure or again pointer itself.

The indirection Operator (*), and it is the complement of &. It is a unary operator that
returns the value of the variable located at the address specified by its operand. For
example,

Example

#include <iostream>

using namespace std;

int main () {

 int var;

 int *ptr;

 int val;

 var = 3000;

 // take the address of var

 ptr = &var;

 // take the value available at ptr

https://beginnersbook.com/2017/08/cpp-data-types/
https://beginnersbook.com/2017/08/cpp-data-types/

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 2

2

 val = *ptr;

 cout << "Value of var :" << var << endl;

 cout << "Value of ptr :" << ptr << endl;

 cout << "Value of val :" << val << endl;

 return 0;

}

Output

When the above code is compiled and executed, it produces the following result −

Value of var : 3000

Value of ptr : 0xbff64494

Value of val : 3000

Pointer Arithmetic
As you understood pointer is an address which is a numeric value; therefore, you can
perform arithmetic operations on a pointer just as you can a numeric value. There are
four arithmetic operators that can be used on pointers: ++, --, +, and -

To understand pointer arithmetic, let us consider that ptr is an integer pointer which
points to the address 1000. Assuming 32-bit integers, let us perform the following
arithmetic operation on the pointer −
ptr++

the ptr will point to the location 1004 because each time ptr is incremented, it will
point to the next integer. This operation will move the pointer to next memory location
without impacting actual value at the memory location. If ptr points to a character
whose address is 1000, then above operation will point to the location 1001 because
next character will be available at 1001.

Incrementing a Pointer

We prefer using a pointer in our program instead of an array because the variable
pointer can be incremented, unlike the array name which cannot be incremented
because it is a constant pointer. The following program increments the variable
pointer to access each succeeding element of the array −

Live Demo

#include <iostream>

using namespace std;

const int MAX = 3;

int main () {

 int var[MAX] = {10, 100, 200};

 int *ptr;

 // let us have array address in pointer.

http://tpcg.io/g0pNAF

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 3

3

 ptr = var;

 for (int i = 0; i < MAX; i++) {

 cout << "Address of var[" << i << "] = ";

 cout << ptr << endl;

 cout << "Value of var[" << i << "] = ";

 cout << *ptr << endl;

 // point to the next location

 ptr++;

 }

 return 0;

}

When the above code is compiled and executed, it produces result something as
follows −
Address of var[0] = 0xbfa088b0

Value of var[0] = 10

Address of var[1] = 0xbfa088b4

Value of var[1] = 100

Address of var[2] = 0xbfa088b8

Value of var[2] = 200

Decrementing a Pointer

The same considerations apply to decrementing a pointer, which decreases its value
by the number of bytes of its data type as shown below −

Live Demo

#include <iostream>

using namespace std;

const int MAX = 3;

int main () {

 int var[MAX] = {10, 100, 200};

 int *ptr;

 // let us have address of the last element in pointer.

 ptr = &var[MAX-1];

 for (int i = MAX; i > 0; i--) {

 cout << "Address of var[" << i << "] = ";

 cout << ptr << endl;

 cout << "Value of var[" << i << "] = ";

 cout << *ptr << endl;

 // point to the previous location

 ptr--;

 }

http://tpcg.io/ujgz9K

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 4

4

 return 0;

}

When the above code is compiled and executed, it produces result something as
follows −
Address of var[3] = 0xbfdb70f8

Value of var[3] = 200

Address of var[2] = 0xbfdb70f4

Value of var[2] = 100

Address of var[1] = 0xbfdb70f0

Value of var[1] = 10

Pointers to Objects

A variable that holds an address value is called a pointer variable or simply pointer.
Pointer can point to objects as well as to simple data types and arrays.
sometimes we dont know, at the time that we write the program , how many objects we want to creat.
when this is the case we can use new to creat objects while the program is running. new returns a
pointer to an unnamed objects. lets see the example of student that wiil clear your idea about this topic

#include <iostream>
#include <string>
using namespace std;
class student
{
private:
 int rollno;
 string name;
public:
 student():rollno(0),name("")
 {}
 student(int r, string n): rollno(r),name (n)
 {}
 void get()
 {
 cout<<"enter roll no";
 cin>>rollno;
 cout<<"enter name";
 cin>>name;
 }
 void print()
 {
 cout<<"roll no is "<<rollno;
 cout<<"name is "<<name;
 }
};
void main ()
{
 student *ps=new student;
 (*ps).get();
 (*ps).print();
 delete ps;
}

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 5

5

‘this’ pointer in C++
09-08-2012
To understand ‘this’ pointer, it is important to know how objects look at functions and
data members of a class.

1. Each object gets its own copy of the data member.
2. All-access the same function definition as present in the code segment.

Meaning each object gets its own copy of data members and all objects share a single
copy of member functions.
Then now question is that if only one copy of each member function exists and is used
by multiple objects, how are the proper data members are accessed and updated?
The compiler supplies an implicit pointer along with the names of the functions as ‘this’.
The ‘this’ pointer is passed as a hidden argument to all nonstatic member function
calls and is available as a local variable within the body of all nonstatic functions. ‘this’
pointer is not available in static member functions as static member functions can be
called without any object (with class name).
For a class X, the type of this pointer is ‘X* ‘. Also, if a member function of X is declared
as const, then the type of this pointer is ‘const X *’ (see this GFact)
In the early version of C++ would let ‘this’ pointer to be changed; by doing so a
programmer could change which object a method was working on. This feature was
eventually removed, and now this in C++ is an r-value.
C++ lets object destroy themselves by calling the following code :

filter_none

brightness_4
delete this;

As Stroustrup said ‘this’ could be the reference than the pointer, but the reference was
not present in the early version of C++. If ‘this’ is implemented as a reference then, the
above problem could be avoided and it could be safer than the pointer.
Following are the situations where ‘this’ pointer is used:

1) When local variable’s name is same as member’s name

filter_none

edit
play_arrow

brightness_4
#include<iostream>
using namespace std;

/* local variable is same as a member's name */
class Test
{
private:
 int x;
public:
 void setX (int x)
 {

https://www.blogger.com/share-post.g?blogID=183330370432670061&postID=8382111831339299049&target=email
https://www.blogger.com/share-post.g?blogID=183330370432670061&postID=8382111831339299049&target=email
https://www.geeksforgeeks.org/g-fact-77/

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 6

6

 // The 'this' pointer is used to retrieve the object's x
 // hidden by the local variable 'x'
 this->x = x;
 }
 void print() { cout << "x = " << x << endl; }
};

int main()
{
 Test obj;
 int x = 20;
 obj.setX(x);
 obj.print();
 return 0;
}

Output:
 x = 20
For constructors, initializer list can also be used when parameter name is same as
member’s name.

2) To return reference to the calling object

filter_none

edit
play_arrow

brightness_4

/* Reference to the calling object can be returned */
Test& Test::func ()
{
 // Some processing
 return *this;
}

When a reference to a local object is returned, the returned reference can be used
to chain function calls on a single object.

filter_none

edit
play_arrow

brightness_4
#include<iostream>
using namespace std;

class Test
{
private:
 int x;
 int y;
public:
 Test(int x = 0, int y = 0) { this->x = x; this->y = y; }
 Test &setX(int a) { x = a; return *this; }
 Test &setY(int b) { y = b; return *this; }
 void print() { cout << "x = " << x << " y = " << y << endl; }

https://www.geeksforgeeks.org/when-do-we-use-initializer-list-in-c/

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 7

7

};

int main()
{
 Test obj1(5, 5);

 // Chained function calls. All calls modify the same object
 // as the same object is returned by reference
 obj1.setX(10).setY(20);

 obj1.print();
 return 0;
}

Output:
x = 10 y = 20

Exercise:
Predict the output of following programs. If there are compilation errors, then fix them.
Question 1

filter_none

edit
play_arrow

brightness_4
#include<iostream>
using namespace std;

class Test
{
private:
 int x;
public:
 Test(int x = 0) { this->x = x; }
 void change(Test *t) { this = t; }
 void print() { cout << "x = " << x << endl; }
};

int main()
{
 Test obj(5);
 Test *ptr = new Test (10);
 obj.change(ptr);
 obj.print();
 return 0;
}

Question 2

filter_none

edit
play_arrow

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 8

8

brightness_4
#include<iostream>
using namespace std;

class Test
{
private:
 int x;
 int y;
public:
 Test(int x = 0, int y = 0) { this->x = x; this->y = y; }
 static void fun1() { cout << "Inside fun1()"; }
 static void fun2() { cout << "Inside fun2()"; this->fun1(); }
};

int main()
{
 Test obj;
 obj.fun2();
 return 0;
}

Question 3

filter_none

edit
play_arrow

brightness_4
#include<iostream>
using namespace std;

class Test
{
private:
 int x;
 int y;
public:
 Test (int x = 0, int y = 0) { this->x = x; this->y = y; }
 Test setX(int a) { x = a; return *this; }
 Test setY(int b) { y = b; return *this; }
 void print() { cout << "x = " << x << " y = " << y << endl; }
};

int main()
{
 Test obj1;
 obj1.setX(10).setY(20);
 obj1.print();
 return 0;
}

Question 4

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 9

9

filter_none

edit
play_arrow

brightness_4
#include<iostream>
using namespace std;

class Test
{
private:
 int x;
 int y;
public:
 Test(int x = 0, int y = 0) { this->x = x; this->y = y; }
 void setX(int a) { x = a; }
 void setY(int b) { y = b; }
 void destroy() { delete this; }
 void print() { cout << "x = " << x << " y = " << y << endl; }
};

int main()
{
 Test obj;
 obj.destroy();
 obj.print();
 return 0;
}

Polymorphism in C++
22-05-2017
The word polymorphism means having many forms. In simple words, we can define
polymorphism as the ability of a message to be displayed in more than one form. A
real-life example of polymorphism, a person at the same time can have different
characteristics. Like a man at the same time is a father, a husband, an employee. So
the same person posses different behavior in different situations. This is called
polymorphism. Polymorphism is considered as one of the important features of Object
Oriented Programming.
In C++ polymorphism is mainly divided into two types:
• Compile time Polymorphism
• Runtime Polymorphism

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 10

10

1. Compile time polymorphism: This type of polymorphism is achieved by function

overloading or operator overloading.

• Function Overloading: When there are multiple functions with same name but

different parameters then these functions are said to be overloaded. Functions
can be overloaded by change in number of arguments or/and change in type
of arguments.
Rules of Function Overloading

// C++ program for function overloading
#include <bits/stdc++.h>

using namespace std;
class Geeks
{
 public:

 // function with 1 int parameter
 void func(int x)
 {
 cout << "value of x is " << x << endl;
 }

 // function with same name but 1 double parameter
 void func(double x)
 {
 cout << "value of x is " << x << endl;
 }

 // function with same name and 2 int parameters
 void func(int x, int y)
 {
 cout << "value of x and y is " << x << ", " << y << endl;
 }
};

https://www.geeksforgeeks.org/function-overloading-c/
https://www.geeksforgeeks.org/function-overloading-in-c/

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 11

11

int main() {

 Geeks obj1;

 // Which function is called will depend on the parameters passed
 // The first 'func' is called
 obj1.func(7);

 // The second 'func' is called
 obj1.func(9.132);

 // The third 'func' is called
 obj1.func(85,64);
 return 0;
}

Output:
value of x is 7
value of x is 9.132
value of x and y is 85, 64

In the above example, a single function named func acts differently in three
different situations which is the property of polymorphism.

Functions that cannot be overloaded in C++

In C++, following function declarations cannot be overloaded.
1) Function declarations that differ only in the return type. For example, the following
program fails in compilation.

#include<iostream>
int foo() {
 return 10;
}

char foo() {
 return 'a';
}

int main()
{
 char x = foo();
 getchar();
 return 0;
}

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 12

12

2) Member function declarations with the same name and the name parameter-type-
list cannot be overloaded if any of them is a static member function declaration. For
example, following program fails in compilation.

#include<iostream>
class Test {
 static void fun(int i) {}
 void fun(int i) {}
};

int main()
{
 Test t;
 getchar();
 return 0;
}

3) Parameter declarations that differ only in a pointer * versus an array [] are
equivalent. That is, the array declaration is adjusted to become a pointer declaration.
Only the second and subsequent array dimensions are significant in parameter types.
For example, following two function declarations are equivalent.

int fun(int *ptr);
int fun(int ptr[]); // redeclaration of fun(int *ptr)

4) Parameter declarations that differ only in that one is a function type and the other
is a pointer to the same function type are equivalent.
void h(int ());
void h(int (*)()); // redeclaration of h(int())
5) Parameter declarations that differ only in the presence or absence of const and/or
volatile are equivalent. That is, the const and volatile type-specifiers for each
parameter type are ignored when determining which function is being declared,
defined, or called. For example, following program fails in compilation with
error “redefinition of `int f(int)’ “
Example:
#include<iostream>

#include<stdio.h>
using namespace std;
int f (int x) {
 return x+10;
}
int f (const int x) {
 return x+10;
}
int main() {
 getchar();
 return 0;
}

Only the const and volatile type-specifiers at the outermost level of the parameter type
specification are ignored in this fashion; const and volatile type-specifiers buried within

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 13

13

a parameter type specification are significant and can be used to distinguish
overloaded function declarations. In particular, for any type T,
“pointer to T,” “pointer to const T,” and “pointer to volatile T” are considered distinct
parameter types, as are “reference to T,” “reference to const T,” and “reference to
volatile T.”
6) Two parameter declarations that differ only in their default arguments are
equivalent. For example, following program fails in compilation with error “redefinition
of `int f(int, int)’ “

#include<iostream>
#include<stdio.h>

using namespace std;

int f (int x, int y) {
 return x+10;
}

int f (int x, int y = 10) {
 return x+y;
}

int main() {
 getchar();
 return 0;
}

Operator Overloading: C++ also provide option to overload operators. For example,
we can make the operator (‘+’) for string class to concatenate two strings. We know
that this is the addition operator whose task is to add two operands. So a single
operator ‘+’ when placed between integer operands , adds them and when placed
between string operands, concatenates them.
Example:

// CPP program to illustrate
// Operator Overloading
#include<iostream>
using namespace std;

class Complex {
private:
 int real, imag;
public:
 Complex(int r = 0, int i =0) {real = r; imag
= i;}

 // This is automatically called when '+' is used

with

https://www.geeksforgeeks.org/operator-overloading-c/

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 14

14

 // between two Complex objects
 Complex operator + (Complex const &obj) {
 Complex res;
 res.real = real + obj.real;
 res.imag = imag + obj.imag;
 return res;
 }
 void print() { cout << real << " + i" << imag <<
endl; }
};

int main()
{
 Complex c1(10, 5), c2(2, 4);
 Complex c3 = c1 + c2; // An example call to

"operator+"
 c3.print();
}

Output:
12 + i9

In the above example the operator ‘+’ is overloaded. The operator ‘+’ is an addition
operator and can add two numbers(integers or floating point) but here the operator
is made to perform addition of two imaginary or complex numbers. To learn operator
overloading in details visit this link.

2. Runtime polymorphism: This type of polymorphism is achieved by Function

Overriding.

• Function overriding on the other hand occurs when a derived class has a
definition for one of the member functions of the base class. That base
function is said to be overridden.

// C++ program for function overriding

#include <bits/stdc++.h>
using namespace std;

class base
{
public:
 virtual void print ()
 { cout<< "print base class" <<endl; }

 void show ()
 { cout<< "show base class" <<endl; }
};

class derived:public base
{

https://www.geeksforgeeks.org/operator-overloading-c/
https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/
https://www.geeksforgeeks.org/override-keyword-c/

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 15

15

public:
 void print () //print () is already virtual function in derived class,
 //we could also declared as virtual void print () explicitly
 { cout<< "print derived class" <<endl; }

 void show ()
 { cout<< "show derived class" <<endl; }
};

//main function
int main()
{
 base *bptr;
 derived d;
 bptr = &d;

 //virtual function, binded at runtime (Runtime polymorphism)
 bptr->print();

 // Non-virtual function, binded at compile time
 bptr->show();

 return 0;
}

Output:
print derived class
show base class

C++ virtual function
o A C++ virtual function is a member function in the base class that you redefine

in a derived class. It is declared using the virtual keyword.
o It is used to tell the compiler to perform dynamic linkage or late binding on the

function.
o There is a necessity to use the single pointer to refer to all the objects of the

different classes. So, we create the pointer to the base class that refers to all
the derived objects. But, when base class pointer contains the address of the
derived class object, always executes the base class function. This issue can
only be resolved by using the 'virtual' function.

o A 'virtual' is a keyword preceding the normal declaration of a function.
o When the function is made virtual, C++ determines which function is to be

invoked at the runtime based on the type of the object pointed by the base
class pointer.

Late binding or Dynamic linkage

In late binding function call is resolved during runtime. Therefore compiler determines
the type of object at runtime, and then binds the function call.

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 16

16

Rules of Virtual Function

✓ Virtual functions must be members of some class.
✓ Virtual functions cannot be static members.
✓ They are accessed through object pointers.
✓ They can be a friend of another class.
✓ A virtual function must be defined in the base class, even though it is not used.
✓ The prototypes of a virtual function of the base class and all the derived classes

must be identical. If the two functions with the same name but different
prototypes, C++ will consider them as the overloaded functions.

✓ We cannot have a virtual constructor, but we can have a virtual destructor
✓ Consider the situation when we don't use the virtual keyword.

#include <iostream>
using namespace std;

class A
{

 int x=5;
 public:

 void display()
 {

 std::cout << "Value of x is : " << x<<std::endl;
 }

};
class B: public A

{
 int y = 10;

 public:

 void display()
 {

 std::cout << "Value of y is : " <<y<< std::endl;
 }

};
int main()

{
 A *a;

 B b;
 a = &b;

 a->display();
 return 0;

}

Output:

Value of x is : 5

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 17

17

In the above example, * a is the base class pointer. The pointer can only access the
base class members but not the members of the derived class. Although C++ permits
the base pointer to point to any object derived from the base class, it cannot directly
access the members of the derived class. Therefore, there is a need for virtual function
which allows the base pointer to access the members of the derived class.

Virtual function Example
Let's see the simple example of C++ virtual function used to invoked the derived
class in a program.

#include <iostream>

{

 public:
 virtual void display()

 {
 cout << "Base class is invoked"<<endl;

 }
};

class B:public A
{

 public:
 void display()

 {
 cout << "Derived Class is invoked"<<endl;

 }
};

int main()

{
 A* a; //pointer of base class

 B b; //object of derived class
 a = &b;

 a->display(); //Late Binding occurs
}

Output:

Derived Class is invoked

Pure Virtual Function
✓ A virtual function is not used for performing any task. It only serves as a

placeholder.
✓ When the function has no definition, such function is known as "do-nothing"

function.
✓ The "do-nothing" function is known as a pure virtual function. A pure virtual

function is a function declared in the base class that has no definition relative
to the base class.

✓ A class containing the pure virtual function cannot be used to declare the
objects of its own, such classes are known as abstract base classes.

UNIT – IV Pointers & Polymorphism in C++

PROF. YOGESH GAIKWAD TEACHING HOURS 10 TOTAL MARKS 14 18

18

✓ The main objective of the base class is to provide the traits to the derived
classes and to create the base pointer used for achieving the runtime
polymorphism.

Pure virtual function can be defined as:

1. virtual void display() = 0;

Let's see a simple example:

#include <iostream>
using namespace std;

class Base
{

 public:
 virtual void show() = 0;

};
class Derived : public Base

{
 public:

 void show()
 {

 std::cout << "Derived class is derived from the base class." <
< std::endl;

 }

};
int main()

{
 Base *bptr;

 //Base b;
 Derived d;

 bptr = &d;
 bptr->show();

 return 0;
}

Output:

Derived class is derived from the base class.

In the above example, the base class contains the pure virtual function. Therefore,
the base class is an abstract base class. We cannot create the object of the base
class.

